Phylogenetic similarity and structure of Agaricomycotina communities across a forested landscape.
نویسندگان
چکیده
The Agaricomycotina are a phylogenetically diverse group of fungi that includes both saprotrophic and mycorrhizal species, and that form species--rich communities in forest ecosystems. Most species are infrequently observed, and this hampers assessment of the role that environmental heterogeneity plays in determining local community composition and in driving beta-diversity. We used a combination of phenetic (TRFLP) and phylogenetic approaches [Unifrac and Net Relatedness Index (NRI)] to examine the compositional and phylogenetic similarity of Agaricomycotina communities in forest floor and surface soil of three widely distributed temperate upland forest ecosystems (one, xeric oak--dominated and two, mesic sugar maple dominated). Generally, forest floor and soil communities had similar phylogenetic diversity, but there was little overlap of species or evolutionary lineages between these two horizons. Forest floor communities were dominated by saprotrophic species, and were compositionally and phylogenetically similar in all three ecosystems. Mycorrhizal species represented 30% to 90% of soil community diversity, and these communities differed compositionally and phylogenetically between ecosystems. Estimates of NRI revealed significant phylogenetic clustering in both the forest floor and soil communities of only the xeric oak-dominated forest ecosystem, and may indicate that this ecosystem acts as a habitat filter. Our results suggest that environmental heterogeneity strongly influences the phylogenetic beta-diversity of soil inhabiting Agaricomycotina communities, but has only a small influence on forest floor beta-diversity. Moreover, our results suggest that the strength of community assembly processes, such as habitat filtering, may differ between temperate forest ecosystems.
منابع مشابه
Landscape position influences microbial composition and function via redistribution of soil water across a watershed.
Subalpine forest ecosystems influence global carbon cycling. However, little is known about the compositions of their soil microbial communities and how these may vary with soil environmental conditions. The goal of this study was to characterize the soil microbial communities in a subalpine forest watershed in central Montana (Stringer Creek Watershed within the Tenderfoot Creek Experimental F...
متن کاملThe Structure of Plant Population of Forested Rangeland in Different Legal Definitions (Case Study: Sabzkouh Region, Chaharmahal & Bakhtiari Province, Iran)
There is less published research on ecosystems of forested rangeland in Iran. This research was conducted to investigate the forested rangeland area based on legal definition via comparison of indices species richness, diversity, and morphology of the trees and shrubs in Sabzkouh watershed, Chaharmahal Bakhtiari province, Iran. Quantitative characteristics of trees and shrubs were measured by 5...
متن کاملConservation Value and Permeability of Neotropical Oil Palm Landscapes for Orchid Bees
The proliferation of oil palm plantations has led to dramatic changes in tropical landscapes across the globe. However, relatively little is known about the effects of oil palm expansion on biodiversity, especially in key ecosystem-service providing organisms like pollinators. Rapid land use change is exacerbated by limited knowledge of the mechanisms causing biodiversity decline in the tropics...
متن کاملEnvironmental and spatial drivers of taxonomic, functional, and phylogenetic characteristics of bat communities in human-modified landscapes
BACKGROUND Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities h...
متن کاملFiltering across Spatial Scales: Phylogeny, Biogeography and Community Structure in Bumble Bees
Despite the expansion of phylogenetic community analysis to understand community assembly, few studies have used these methods on mobile organisms and it has been suggested the local scales that are typically considered may be too small to represent the community as perceived by organisms with high mobility. Mobility is believed to allow species to mediate competitive interactions quickly and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular ecology
دوره 19 7 شماره
صفحات -
تاریخ انتشار 2010